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Abstract: Remarkable changes have occurred in condensed matter physics over the past several years with development of
topological materials which offer a new way of thinking about phases of quantum systems in terms of topological invariants
and quantum phases of matter beyond the traditional ideas involving the breaking of symmetries. The aim of this review is
to give a comprehensive theoretical guide to the foundations of the topological phases including topological insulators
semimetals and superconductors. It also describes the mathematical instruments to describe these phases e.g. topological
invariants and the theory of the Berry phase and the effective quantum field tools, which are important in determining the
stability of these materials to external perturbations. Classification systems including the AltlandZernbauer symmetry
classes and the periodic table of topological phases will also be discussed as we attempt to understand the existence
underlying relationship between symmetry and topological structure in the generation of unconventional quantum states.
We also inform about the most noticeable theoretical frameworks, which lead to this field development such as the Haldane
model and the KaneMille model and mention some of their applicable domains in new domains like quantum computing
spintronics and energy-efficient technologies. Finally, we put into perspective the main technical issues confronting the field
forced to draw such issues as the challenges that surround the preparation of materials and the control of their properties to

such challenges as complex electronic interactions and environmental stability.
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1. Introduction interest gathering attention of relevant research

) and industrial groups as a result of its ve
Condensed matter physics has been one of the group Yy

. ' . tincti it : . .
pillars of modern physics both in terms of theory distinctive qualities which fail to be described

. oy . th tablish i f terial
and experiments. It deals with investigation of by the established paradigms  of materials
. . C e hysics [1] [2] . Their topological ti

physical characteristics of materials in different physics [1] [2] eIt topological properties are

.. ) . very deep in nature and includes notable features
conditions both solid and liquid state and ry ceep

o like how they will retain their own quantum
gaseous state. Within the last couple of decades 4 d

. ) phases even with the existence of external
due to scientific developments topological

) . disturbances and this makes them stable on the
materials have become a significant area of

microscopic level [1] [3].
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This area is viewed as a potential one with
regard to its use in the future, i.e. quantum
electronics, the design of high performance,
energy efficient components [2], [4].
Topological materials have attained a growing
level of interest due to the opportunity to
transform the way we think about quantum
systems, through the introduction of a new
conceptual system of knowledge based on
topology, which permits the explanation of

novel states, including topological insulators,

and Dirac and Weyl points [3], [5].

This occurred in the late 2000s with the
discovery of the topological insulators and the
field became a point of focus [6]. These
materials have unusual properties the most
attention-catching one is surface or edge
electrical conductivity but at the same time the
material acts as an insulator internally [6] [7].
This is attributed to the quantum properties,
which were identified by carrying out a close
examination of compounds that do not have
time-reversal symmetry. This finding amounted
to an important qualitative change in
appreciating solid-state physics [7] [8]. Since
that time the field of study has been extended to
new topological classes such as conductors and
topological semimetals. The variety of study on
quantum matter has contributed to the

advancement of more sophisticated theoretical

frameworks to understand the state of quantum

matter [2] [3] [9].

The purpose of the current paper is to give an in-
depth overview of the theoretical basis of the
physics of topological materials in terms of the
most significant fundamental mathematical tools
contributing to the explanation of its

complicated phenomena [10].

It will deal with the criteria by which such
materials are classified by their various
symmetry properties as well as how the
properties of such materials can be discovered
by the topological number theory [5] [11].
Besides this paper covers the possible use of
these materials in other applications like
quantum electronics and stable
superconductivity as they possess some

unconventional physical properties [4] [9].

The research issues impeding the application of
these materials in advanced technology namely,
quantum computing and low-power electronics

will also be discussed [9] [12].

In this work we will seek to elucidate on the
potential of topological materials in the
emergence of the sphere of condensed matter
physics and offer a theory that will facilitate
scientific knowledge enhancement in the field of
topological materials as well as on future

research work in the expanding field [1] [10].
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2. Theoretical foundations of topological

materials

The topological materials within the theoretical
knowledge level is a fundamental framework
and a significant aspect when it comes to the
advancements in condensed matter physics.
Topology in this context, tries to investigate the
quantized nature of electronic wave functions
and the general properties which are invariant to
the effects of infinitesimal variations to the
parameters of a system. This differs with the
traditional notions of local order. These
perfections can be explained by topological
invariants like Chern number and the Z2 index
which reveal the quantum mechanical properties
of these systems in intrinsic manner. The
topological materials possess the quantum
phases that are robust to the local perturbations
such as structural defects, scattering and
interference with the outside realm. That
stability is caused by the topological protection
of some fundamental symmetries such as time-
reversal symmetry and crystalline symmetries.
Acquiring this feature they brought about a

growing interest on these materials in
developing fault-tolerant platforms of the
quantum computing technology as well as in

low-power electronics applications [13]

Due to the significant advance in theoretical
frameworks instrumental by the use of machine
computing

learning and high-performance

methods it is evident that the landscape of
classifying topological phases has increased
immensely no longer being restricted only to
topological insulators  but being extended

further to topological semimetals
superconductors and higher-order topological

phases [14].
2-1 Topological Insulators

Topological insulators (TIs) are a class of
quantum materials that are insulating in the bulk
(the interior) but possess conductive states at the
edges or surfaces. These edge states are
protected by time-reversal symmetry (TRS)
giving them a pronounced resistance to non-
magnetic disturbances  resulting in a spin-
polarized non-dissipative electronic transition at
the boundaries. The presence of these
conductive states can be expressed through a
precise mathematical description based on
topological constants most notably the Z2 index
in two- and three-dimensional systems that resist
breaking time-reversal symmetry. The general

form of this index can be written in two

dimensions as follows:

1
17=—< dZK.QZ—jg dk.A)modZ. 2-1)
21\ Jppz EBZ
Where:

v: represents a topological number

Q: (Berry curvature)
A: (Berry connection)
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EBZ: (Effective Brillouin Zone)
OEBZ: the boundary of the Effective Brillouin

Zone

A value of 1 labels a nontrivial topology phase
and a value of 0 a conventional insulator. This
relation gives the relationship between the
topology and the geometrical properties of the
wave function through Berry phase. Over the
past few years great design and discovery
efforts of new topological insulators have been
achieved due to the developments of symmetry
analysis tools spin-orbit coupling control and
first-principles calculations. Such success has
been specifically real on layered van der Waals
materials and artificial hetero structures. [15]
[16] . Such advancements have opened up the
possibility to integrate these materials in to
many applications such as spintronic devices
quantum anomalous Hall platforms and

topological qubits in quantum computing [17].

Energy

Valence band

Momentum

Fig.(1): Band structure of a 3D symmetric topological

insulator[17].

2-2 Topological Semimetals

The sample application of topological conductors
can be discussed as the example of Dirac and Weyl
semimetals that present specific quantum properties.
These materials are expressed in the crisscrossing of
the conduction and valence bands at discrete
positions in the Brillouin zone. These details
produce quasiparticles which behave as
relativistic Dirac or Weyl fermions giving rise to
novel phenomena including surface Fermi arcs
and chiral anomalies in the presence of an

applied magnetic field[2] [5] [9].

The systems enjoy unusual responses to external
perturbations  and such aspect has been
substantiated by the abundance of theoretical

models and experiments [1] [2] [14].

One can describe the energy dispersion of

quasiparticles in momentum space as follows:

E(k) = £K|hvy| 2-2)

Where:

E(k): energy of the particles versus

k=1/wavelength.
h: Planck constant divided by 2pi.

ve: The Fermi velocity v which is the velocity
of Weyl-like or Dirac-like particles in the

material.

The type of spectrum is &, which means that it
consists of two symmetric bands a positive

energy band and a negative energy band at a
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meeting point which is called the Dirac point or

the Weyl point.

2-3 Topological Number Theory (Topological

Invariants)

Topological constants are very useful and have a
center-stage of characterizing topological phases
by their inherent structure in quantum
properties. Such constants as Z2 index on
topological insulators and Chern number on
topological conductors are employed as
quantitative measurements that cannot be
affected by continuous distortions on the system
such as crystalline defects on the lattice and
certain phase transitions of the system. These
constants describe the robustness of topological
phase and its extension in parameter space
rendering them highly useful as a way of
characterising the structure of non-conventional

quantum phases [6] [11] [14] .

F(k) is the Berry curvature within the Brillouin
zone and one can calculate Chern by doing an

integral thereof as follows:

_1 2
C= ngzf(K)d K (2-3)
with F(k) the Berry curvature in the wave space.

Such numbers cannot be disturbed by the
common disturbances, like crystal imperfections
or phase changes. This means that this material
will retain its topology characteristics despite

the regional modifications e.g. influence. Such

numbers can describe the presence of inert. edge

states in topological insulators.
2-4 The Role of Band Theory

Band theory Solid-state physics Band theory
forms a foundation of solid-state physics by
offering an explanatory conceptual framework
of the electronic configuration of crystalline
materials. The band theory is founded on the
time-stable solutions to Schrodinger equation.
The electrons are supposed to move in a
periodic potential produced by the periodic
packing of atoms in a crystal lattice. The origin
of this periodic potential is the translational
symmetry of crystals which permits quantizing

the energy levels into distinct bands:

Fllpnk = En(k) ll)nk (2 - 4')

H represents the time periodic Hamiltonian
P,k The Bloch wave function in the n n th
energy band, the crystal momentum K and the

energy dispersion relation E,, (k)

The band theory is also useful in the topological
material study since this allows us to chart non-
trivial band inversions that commonly arise out
of spin-orbit coupling or breaking of the
crystals. The net outcome of such inversions are
leads to surface or edge states that are immune

to conventional materials [9] [13].

Highly robust states Spectra of topologically-

protected states tend to be very robust to
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perturbations. This activity is pertinent to the
topological invariants on the basis of universal
aspects of Bloch wave functions within the
Brillouin zone. The recent advances have
allowed to build on the achievements of
classical band theory, by embodying the
symmetry indices in the notions of topological
quantum  chemistry. The  systematic
understanding that this integration offers to
characterization of topological phases in terms
of the eigenvalues of symmetry elements and the
content of atomic orbitals at high-symmetry

points in the inverse space [14] [18] [20].

These recent methods have allowed both
massive and highly effective topological surgery
of topological phases, and the building of
comprehensive materials databases, which is
done utilizing first principles calculations and

symmetry-based queries [1] [16] [19] [21].

These more fancy constructions have also led to
the discovery of novel topological insulators

semimetals and superconductors [20] [21].

The techniques have equally been important in
exploring hetero structures especially two-
dimensional van der Waals materials that have
proven to exhibit tunable and controllable

topological properties [15] [17].
2-5 Berry Phase and Topological Curvature

The Berry phase is a geometric quantity

obtained by the wave function of a quantum

system as it slowly (adiabatically) evolves along
a closed path C in parameter space. This phase

is defined by the relationship:
7a(C) = i§ AR @ (RIT4IH(R)) (2 5)
C

Where:
R represents the vector of coefficients.

Vi a gradient operator in the parameter space.

(Y (R)|Vz |, (R)) Perry's Connection.

The Berry curvature can be analogized to the
behavior of a magnetic field in momentum or
parameter space and is a fundamental factor in
the modern theory of electric polarization and
many topological phenomena. For example it is
essential for understanding the anomalous Hall
effect in systems that do not possess time-
reversal symmetry. It also contributes to the
emergence of topologically protected edge and
surface  states by

generating  quantized

topological constants such as the Chern number

[6] [9].

Recent research has revealed a broad role for the
Berry curvature beyond classical settings
further enhancing its status as a fundamental

analytical tool in condensed matter physics:

o In antiferromagnetic systems multipole

Berry bend structures have been
identified  for example in Kagome
antiferromagnets such as FeSn. It has
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been confirmed that the Berry bend
quadrupole induces a large third-order
nonlinear Hall effect even at room
temperature. [22].

e The Berry curvature in non-Hermitian
photonic systems has been measured
directly using polarimetry in photonic
crystal sheets. This allows the valley
Chern number to be extracted without
affecting the eigenstates of the system.
This approach provides a rich

experimental understanding of the
geometric properties of dissipative or
excited systems. [23].

e Moreover some recent studies have
shown how the quantum geometric
tensor combining Berry curvature and
quantum gradient controls nonlinear
transport states. It has been shown that
systems lacking inversion symmetry
exhibit Berry curvature dipoles and
quadrupoles leading to second- and

third-order responses such as the

anomalous nonlinear Hall effect.. [24].

All these results highlight a fundamental
shift in our understanding of Berry
curvature. Once considered primarily in the
context of linear responses and isolation
phases it has now become a fundamental

element in nonlinear transport photonic

topological platforms and quantum
engineering.
BERRY PHASE BERRY CURVATURE

Fig. (2): Representing the concepts of Berry phase
and Berry curvature.[ Figure designed by the author]

3. Mathematical Techniques Used in the
Study of Topological Materials

Understanding topological phases of matter
requires a precise mathematical framework
capable of describing quantum constants that
remain invariant under continuous deformations.
This section outlines the main mathematical
techniques used to classify and characterize

topological materials

3.1 Topological Number Theory (Topological

Invariants)

Topological constants are quantized quantities
that serve as identifiers for different topological
phases. The most prominent of these constants
are the Chern number the Z2 indices and the
spin numbers. These constants remain stable
relative to the smooth deformations which leave

the structural symmetry and gap in energy of the
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system unchanged. Z2 indices Z2 indices are a
crucial mechanism which is applied in the
classification of topological insulators which
have two or three dimensions and preserve time-
reversal symmetry. This constant can be
typically built up using integrals over the Berry
continuum or the Berry twist on a manifold in
momentum space or parameter space. This

integral can be simplified as given below:
Zzz(—l)fAdzil B3—-1-a)
M

Where:

M represents the manifold in the phase space to

the matter

A, is the differential form coming along with
the quantum field connection (Berry connection

or Berry curvature in some contexts)

The value of Z2 index is negative 1, which
means unconventional topological phase with
the occurrence of surface or edge protected
states amidst total energy gap. It is recently that
it has been extended to the application of quasi-
quantum Hall systems which goes to show its
high accuracy even in metallic and semi-
metallic systems [25]. Among the topologically
most significant quantities in systems without
the time-reversal symmetry as the quantum Hall
effect, Chern number is one of them. This figure
is given by the integration of the Berry curvature

as expressed by the statement in Equation (2-3).

A non-zero Chern number indicates the presence
of quantum Hall conductivity and topologically
protected chiral edge states. Some recent
research has demonstrated the existence of
anomalous quantum Hall (QAH) phases with
high Chern number in specially designed
materials such as MnBi,Te, thin films [26]. In
one-dimensional systems with chiral or particle-
hole symmetry such as the Su-Schrieffer-Heeger
(SSH) model the spin number v provides a

criterion for identifying the topological phase

_1 ﬂdl det[q(K)]dk 3—1—b
V—zm_ndkogeq() ( )

Here q(k) is the off-diagonal mass of the Bloch
function in its chiral symmetric form. This
constant correctly predicts the emergence of
zero energy edge states in topologically non-

trivial phases. [27].

3.1.1 Emerging Techniques and

Generalizations

e Local Chern Markers

To link theory and experiment together local Chern
signals were developed as an analogue of the Chern
number in real space. These signals allow precise
spatial detection of topological order which is very
important in inhomogeneous or disordered systems.

[28].

e Topology in Non-Hermitian Systems
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Recent theoretical developments have led to an
expansion of the concept of topological
invariants to non-Hermitian systems where the
Hamiltonian is not equal to its conjugate. In
these frameworks spectral degeneracies known
as exceptional points play a role similar to Dirac
nodes in Hermitian systems. The topological
invariants in these systems have been redefined
in terms of generalized spin numbers and
biorthogonal Berry phases which fit the non-
standard mathematical properties of the non-

Hermitian energy spectrum.. [29].

e Curvature Renormalization Group

(CRG)

The CRG approach describes the behavior of

Berry curvature gradient around phase
transitions. The method is an alternative to the
traditional renormalization techniques, and it has
been demonstrated to be wuseful in a
classification of critical points in a topological

system. [30].
3.2 Effective Quantum Field Theory

Effective Quantum Field Theory (EQFT) is the
important resource in the area of theoretical
physics in comprehending the physical
phenomena at lower energies than in the higher
energy scales like grand unification energy or
the Planck energy. This theory is premised on
the gauge which

separation  principle

presupposes that high-energy degrees of

freedom can be ignored and be substituted by
effective terms that are added to the low-energy
Lagrangian. As an illustration in the electroweak
energy range a diagrammatic (e.g.: the
HooftVeltman diagram technique) can be
applied so that renormalization can be studied at
the single-loop order and chiral symmetry
maintained leading to a consistency of physical
amplitude calculation throughout the effective

frame [31].

In the subject of condensed matter physics the
dynamics of electrons on or close to the Fermi
surface can be described in terms of an effective
theory = grounded upon  low-momentum
scattering which allows electronic phenomena

in crystals to be effectively discussed:

1o+ 5\ +9 w2
Lyp=19 lat"’ﬁ 1/""5(‘/) P +--3-2)
Where:

m* is the effective mass of the electron

g represents the strength of the interaction

between the electrons.

This type of description is classified as a
"Fermi-Landau liquid model " an effective field

theory for electrons in metals.
3.3 Edge State Theory

Edge state theory describes the behavior of
electrons within the boundaries of topological

materials such as topological insulators or
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systems that exhibit the quantum Hall effect. In
these cases conductive edge states emerge that
resist scattering. This phenomenon is due to the
topological structure of the material or its
fundamental symmetries. These states arise as a
result of the presence of an energy gap in the
electronic structure of the crystal with lower-
energy energy states remaining localized at the
edges. The Bernevig—Hughes—Zhang model and
the two-dimensional Schrodinger and Dirac
models are the fundamental theoretical models
for studying these phenomena. The motion of
electrons at the edges can be described using the
one-dimensional Dirac equation which describes
the propagation of topological conductive states

along the boundaries of the sample:
H=-in 9 3-3
= —LNVp0oyg ox ( a)

where:

H: the Hamiltonian

h : the reduced Planck constant
VF : the Fermi velocity

oy : the Pauli operator

% : the spatial derivative along the edge

direction.
This equation expresses the case of a spectral

edge moving in a specific direction without the

possibility of back reflection. This is due

to the separation of the right and left channels
due to the topological structure. In the case of
the quantum Hall effect the edge can be defined
as a channel that conducts current in only one
direction. The quantum conductivity can be

given by the following equation:

2

e
0y =ve  (3-3-Db)

y
Where:
Oy : the Hall conductance

v : a whole number (in classical quantum
effects) or fractional number (in fractional
quantum effects) representing the number of

edge states.
e : the charge of the electron
h : Planck's constant.

The bulk-boundary correspondence principle
states that the number of edge states in a
topological system reflects its fundamental
topological number such as the Chern number.
This principle is the conceptual link between the
microscopic topological structure of the system
and the observable physical phenomena at the
edges. Recent experimental measurements have
confirmed this principle particularly in
magnetic insulators such as

MnBizTe4

topological
where strong edge currents have

been observed even in the absence of external
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magnetic fields confirming the intrinsic nature

of topology in determining edge properties [32].
3.4 Degenerate Matrix Theory

Degenerate matrix theory is a fundamental
mathematical tool in the analysis of quantum
systems particularly in the study of topological
materials that exhibit properties resulting from
symmetry and symmetry breaking. A degenerate
matrix is a matrix with degenerate (repeated)
eigenvalues a property that indicates the
presence of internal symmetries in the physical
system under study. This degeneracy contributes
to the repetition of energy levels a behavior that
can be observed in many topological models
such as topological insulators and non-classical
quantum phases. When the Hamiltonian matrix
H is degenerate it contains at least two identical
eigenvalues indicating an underlying symmetry

in the system that affects its spectral structure.

yi and yj denote wavefunctions with the same

eigenvalue E demonstrating  spectral
degeneracy. It is a direct consequence of
quantum degeneracy that also is central to define
the topological phase transitions. In order to
display the consequences of a perturbation
which might result in partial breaking of the
symmetry the projection is calculated on to the
subspace of degenerate eigenvalues of that is

that the eigenvalue E. This extrapolation is

written mathematically as the projection matrix
P which projects the dynamics onto this
subspace and calculates the sensitivity to
perturbations in each dimension of this

subspace:

d
P = gt B-4-b)
n=1

Where: yn is a collection of gradient wave

functions and d is the number of such functions.

Through the examination of the small weak
couplings  degenerate perturbation theory is
applied to examine small shifts of the energy
level and time development of quantum states.
This method permits the isolations of hidden
dynamical dynamics in degenerate spaces at
which the eigenvalues are identical without a
perturbation and accessing how the eigenvalues

are split, or alteration of the wave functions

under small external forces:
H =Hy,+ AV B3-4-o¢

Where: Hp is the gradient Hamiltonian and V a

small perturbation.

Energy transformation can be determined during
solving of the interference matrix within the

gradient space:
Win = (¢m|V|¢n> B3—-4-d)

The most recent work demonstrated that this can

be done effectively by applying degenerate
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perturbation theory with the tools of quantum
engineering to characterizing both topologically
degenerate states and symmetry-protected states

[33].

Further studies on exceptional point physics
have demonstrated that Hamiltonians that are

degenerate behave nonlinearly where their

spectral sensitivities attain VL €This has the
potential of opening up to exciting applications
in ultra-precision sensing in non-Hermitian

topological systems [34].

The approach is common in the study of

quantum phenomena in materials whose
topological properties can be highly non-trivial
such as systems with strong interactions and

symmetry-guaranteed edge states.

3.5 Fourier Transformations and Phase

Transitions

Fourier transforms play a fundamental role in
the analysis and study of physical systems
amenable to  spectroscopic  description
particularly in the context of phase transitions.
They allow the transition from real space (r) to
reciprocal space (k) facilitating the study of
microscopic structures and the behavior of
matter in different phases. The three-
dimensional Fourier transform of a physical

field function f(r) can be written as:

fF-(K) = f f@) e ddr (3-5-a)
R3

While the inverse transformation is given by:

1

f(r)=W

J f~(K) e"*7d@3r(3 — 5 — b)
R3

Within the scope of phase transitions Fourier
transforms are an essential tool for interpreting
correlation functions that describe physical
variables interacting (e.g. density or magnetism)
in distinct points in a system. The two point

correlation function follows as:
G(r) =(0(0)d(r)) 3—-5-¢c)

where @(r) is a physical quantity, magnetism or

density and (-) refers to ensemble average

Fourier transform is given by:
S(K) = f Gr) eX"d3r (3-5-d)

The structure factor is measurable through

experiment such as X-ray and neutron
diffraction. Most recently inverted structure
factor calculation under light excitation e.g. in
VO 2 has been shown to be possible with tensor
network simulations that can furnish good
understanding of phase transitions in addition to
the spatial correlations in strongly coupled

system [35].
4. Classification of topological phases

Topological phases are an unorthodox phase of
matter system. They cannot be categorized
according to the local properties like energy gap

or symmetry breaking unlike the conventional
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phases. Instead they are characterized by
properties that are global in nature resulting out
of the way the electron wave function is
characterized by the frequencies of the band.
These phases themselves are described in terms
of mathematical abstractions based on topology
and the theory of group representations and are
characterized by topological invariants such that
these do not change with continuous
deformations of the system provided the spectral

gap does not cease.

Such a distinction depends both on topology of
the reciprocal space, and also on the
correspondence between the electronic energy
bands. The topological constants are read off
and obtained by integrations over the Brillouin

zone.

The most prominent example of that is a Chern
number that can be estimated in Equation (2-3)
and can be viewed as a quantitative measure of
the topological nature of the system [13] [19]
[36].

4.1 Main types of topological phases:
4.1.1 Topological Insulators

These materials have a spectral gap in their
overall electronic structure and at the same time
contain conductive edge states that are generated
as a direct result of time-reversal symmetry
(TRS) which gives them topological protection
disturbances.  These

against non-magnetic

materials are classified according to their
topological Z, indices in two and three
dimensions which has recently been proven
thanks to the rapid progress in the study of
intrinsic topological insulators. [6] [9] [17] [25]
[39].

4.1.2 Topological superconductors

Unconventional edge states are found in
topological superconductors the most apparent
ones are zero-order Majorana modes emerging
at system boundaries or topological defects.
These systems are categorized by topological
indexes of type either Z or Z2 depending on the
symmetries the system preserves e.g. time-
reversal symmetry and particle gap symmetry.
This type of materials was recently a subject of
great attention as it is capable of bearing strong
anti-disturbance quantum states and therefore

will be a future candidate to use topological

quantum computing [7] [10] [11] [27] [36] [37].
4.1.3 Topological semimetals

Weyl and Dirac semimetals are among the most
important topological materials as they exhibit
distinctive spectral points called Weyl or Dirac
points near the Fermi level. These points are
associated with topological charges such as
non-zero Chern number  which causes the
appearance of Fermi arcs on the crystal surfaces.
This spectral structure generates distinct electron

transport nonlinear Hall effect and the quantum
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distortion effect. Angular resolved photon
emission spectroscopy (ARPES) and quantum
fluctuation data including the de Haas van Alpen
effect has been wused experimentally to
determine the existence of these surface

states[2] [5] [22] [38] [39].

Conduction :
band e Fermi
@
Dirac/Weyl
point Valence

Brillouin zone
Brillouin zone

Fig.(3): Energy bands Dirac/Weyl points and Fermi arcs

in topological semimetals within the Brillouin Zone [38].
4.1.4 Topological Crystalline Insulators

The topological phases differ in that they are
defined in terms of explicit crystal symmetries
(reflection, rotation and chirality) rather than
being restricted to time-reversal. These states
have been experimentally verified in materials
including SnTe  which is viewed as a
sophisticated sample of topological-insulators
secured in point reflection invariance. The
recent studies have helped in enhancing the
topological classification of these phases with

the assistance of the crystal symmetry indices

and breaking down band representations on

high-symmetry points in the Brillouin zone.[14]
[18][21] [40].

4.2 Topological classification and symmetry:

the Altland-Zirnbauer family

AltlandZirnbauer (AZ) classification, AZ
classification The AZ classification is an
important theoretical tool to describe quantum
topological phases in terms of three broad

classes of symmetry:

e time-reversal symmetry (T)
e Symmetry on particles spacing (C)
e Charge/conductivity symmetry (S)

This typology returns ten topological classes
which are all referred to as the periodical table
of topological phases. Every spatial dimension
has so-called topological index either integer (Z)

or binary (Z,) [10] [11].

5
Cass T C S 0 1 2 3 4 5 7
A 0002Z 0 Z 0 Z 0 Z 0
A 0 01 0 2 0 2 0 2 0 Z
AL +002Z 0 0 022 0 2 Z
BDI + + 12 2 0 0 0 2Z 0 2Z
D 0 +02 2 Z 0 0 0 22 0
DI - + 1 0 2 2, Z 0 0 0 22
AT - 0022 0 2 2 Z 0 0 0
ch - -120 2 02 2 Z 0 0
C 0-00 0202 2 Z 0
c +-120 0 0 2 02 2, 2

Table 1: Periodic table of topological insulators and
superconductors (1D up to 3D) [42]

Over the past few years this framework has been
extended considerably to incorporate crystalline
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symmetries higher-order boundary phenomena
and non-Hermitian systems leading to the
development of extended versions of the AZ
table which are currently in use to classify
insulators  and

higher-order  topological

superconductors [41].
5. Comparison with traditional materials

Topological materials represent a paradigm shift
in the classification of condensed matter phases
transcending the traditional framework that
divides materials into conductors
semiconductors and insulators based on local
electronic properties particularly the presence
of an energy gap at the Fermi level. Topological
materials are unique in that they possess
universal topological constants such as the
Chern number and the A, index which remain
quantized and stable under the influence of
simple system distortions as long as the spectral

gap does not close [11] [25].

This  topological protection provides a
significant degree of robustness to structural
disturbances and defects unlike conventional
materials which rely on symmetry breaking and
local order parameters to determine their
physical properties. One of the most distinctive
features of these materials is the presence of
topologically protected surface or edge states
which are generated as a result of the interaction
of bulk with boundaries in the system. These

states are established by time-reversal symmetry

or specific crystal symmetries and remain stable
even in the presence of moderate disturbances

[91 [14].

In contrast surface states in conventional
materials exhibit high sensitivity to impurities
and defects and their conductive properties can
Furthermore

easily degrade. topological

materials  exhibit  exceptional = quantum
phenomena such as dissipative edge transport
and quantum conduction  which are not
observed in conventional systems based on
quasi-classical charge carrier motion. These
properties provide a gateway to advanced
applications in fields such as fault-tolerant
and highly

quantum computing spintronics

energy-efficient nanoelectronics [9] [17] [36].

Conventional
Material

Conduction ' Conduction
band band

Topological
Material

Fermi level

band surface states

Band gap

@

Conventional Insulator
No conducting surface

Topological Insulator:
Gapless surface states

within band gap
Fig. (4): Emergence of protected surface states in

topological materials compared to conventional

materials[.[Figure designed by the author]

6. Modern Applications and Theoretical
Models
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Topological materials have emerged as a key

element in contemporary condensed matter

physics due to their protected surface states and

unique symmetry properties which open the way

for pioneering applications in theory and

technology.

6.1 Prominent Practical Applications

Topological Quantum Computing:
Topological superconductors are one of
the most distinctive quantum systems
that support zero-point Majorana modes.
These quasiparticles exhibit non-Abelian
statistics making them fundamentally
different from conventional fermions and
bosons. These modes provide a
promising platform for creating quantum
bits (qubits) that exhibit natural fault
tolerance due to their topological
protection making them ideal for
topological quantum computing
applications. Recent studies have
demonstrated the emergence of these
modes in several systems including
Mn,B, as well as in carefully engineered
hybrid  structures  that  combine
superconductivity and electronic
topology which will support the
possibility of controlling these states and
using them in future quantum devices.

[36] [37].

Low-Power Electronics:

Topologically protected edge states in
two-dimensional topological insulators
provide a scattering-free  electron
transport channel due to their resistance
to scattering from defects or impurities
enabling efficient energy transfer at the
nanoscale. This behavior is ideal for
developing low-power electronic devices
as power loss can be minimized. This
makes these materials a promising option
for designing energy-efficient
nanoelectronic components. [9] [17].
Topological Spintronic: The strong
coupling between electron momentum
and spin called spin-locking in
topological insulators offers promising
possibilities for generating stable spin
currents without the need for external
magnetic fields. This physical principle
is a fundamental step toward developing
high-performance logic devices and
memory characterized by ultrafast speed
and  stability making topological
insulators a promising foundation for
modern spintronics.[17].

Quantum and Magnetic Sensors: Weyl
and Dirac semimetals exhibit
unconventional and strong responses to
electromagnetic fields due to the chiral
anomaly and Berry curvature effects
characteristic ~of their topological

structure. These properties enhance
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magnetic and gravitational sensitivity
paving the way for precise applications
in topological sensing and high-
performance detection in complex

quantum environments [24] [38] [39].

APPLICATIONS OF
TOPOLOGICAL MATERIALS

I |
Quantu_m Low-Power
Computing Electronics

(NN
U

Spintronics Quantum
Sensors

Fig. (5): Main areas of applications of topological
materials.[ Figure designed by the author]

6.2 Advanced Theoretical Models

The theoretical exploration of topological phases
has been developed using sophisticated models
that provide deep mathematical insights into the

non-trivial topology of domains:

e Haldane Model (1988):
Haldane's (1988) model is one of the
fundamental models that explains the
emergence of Chern insulators without
the need for a net magnetic field which
provides a theoretical framework to

accommodate the anomalous quantum

Hall effect. In Ak (2005) Kane-Milley's

model was introduced as an extension of
this model by linking the spin-orbit
coupling within a similar lattice structure
which opened the door to understanding
two-dimensional topological insulators
especially in materials such as graphene.
This model represented a basis for
explaining the existence of edge states
protected by time-reversal symmetry and
contributed to the development of the
concept of the topological Z, index...
Kane-Mele  Model (2005):  The
incorporation of spin-orbit coupling into the
Haldane model opened the door to the
discovery of the quantum spin Hall effect in
two-dimensional ~ systems  similar  to
graphene. This modification demonstrated
the possibility of generating anti-dispersion
spin edge currents protected by time-reversal
symmetry without the application of an
external magnetic field. This discovery
established a fundamental step in the
development of the theory of topological
insulators and their future applications in
spintronics and quantum computing. [11].
Non-Hermitian Topological Models:
These models expand the scope of the
traditional topological classification to
include non-Hermitian systems
characterized by gain and loss
mechanisms. This has resulted in the
discovery of new topological phases

associated with unconventional edge
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states not found in Hermitian systems.
These developments draw attention to
distinctive spectral structures such as the
asymmetric spectrum and exceptional
points increasing the understanding of
topology in open systems and offering
promising possibilities for the design of
highly sensitive photonic and electronic

devices [23] [29] .
7. Challenges and Future Prospects

Despite the quantum leap in the understanding
and design of topological materials fundamental
challenges remain that limit their practical
applications. The most important of these
challenges is the difficulty of manufacturing
topological materials with high crystalline
quality that can maintain their topological
environmental

properties  under  harsh

conditions. Factors such as  structural

heterogeneity temperature fluctuations and
pressure can weaken protected edge states and
quantum coherence causing a deterioration in

topological performance [14] [21] [40].

There is also a significant gap between ideal

theoretical models and experimental
applications. Many topological predictions rely
on simplified proposals for band structures
without taking into account electron interactions
chaos and lattice vibrations. To bridge this gap
advanced approaches such as dynamical mean
(DMFT)

field theory density  matrix

renormalization group (DMRG) and quantum
Monte Carlo simulations must be employed
which provide a more accurate description of

systems with strong interactions [31] .

Nevertheless the future of topological materials
remains promising. For example topological
quantum bits based on Majorana patterns are a
prime candidate for building error-tolerant and
scalable quantum computers [36], [37]. The
potential to reduce energy loss and increase
electrical conductivity at room temperature
expands the horizon for developing low-power
yet highly efficient electronic technologies [9]
[22].

These insights can also be advanced with
modern techniques in artificial intelligence and
high-performance computing which are being
leveraged to accelerate the discovery and design
of topological materials. Machine learning
algorithms are being employed to predict
topological invariants from initial crystal
structures helping to guide experimental efforts
more efficiently [16], [19]. This integration of
theoretical physics and data science is likely to
yield significant breakthroughs in the near future
bringing topological materials closer to practical

technical applications.
8. Conclusion

In this work, we detail the theoretical and

physical  developments  associated  with
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topological materials highlighting  their
fundamental role in redefining fundamental
concepts in solid-state physics. Theoretical
models such as topological insulators and
conductors have created an ingenious conceptual
framework for understanding the quantum
behavior of electrons in complex systems and
have contributed to the discovery of
unconventional electronic phenomena based on
comprehensive topological properties. We
systematically compare topological materials
with their conventional counterparts
demonstrating the fundamental differences in
their electronic magnetic and optical responses
as confirmed by recent experimental results. We
also highlight emerging trends such as strong
electronic interactions symmetry functions and
topology in non-Hermitian systems which
currently represent active areas of research. The
field of topological materials is one of the most
dynamic areas in contemporary physics bridging
theoretical challenges with promising technical
applications. With the continued development of
fabrication techniques numerical simulations
and the use of artificial intelligence tools these
materials can be expected to contribute to the
electronic and

development of advanced

quantum  systems. Therefore continuing
multidisciplinary research in this field is a
necessary step towards exploring the full
potential of topological materials and exploiting

them in next-generation applications.
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