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Abstract: Remarkable changes have occurred in condensed matter physics over the past several years with development of 

topological materials which offer a new way of thinking about phases of quantum systems in terms of topological invariants 

and quantum phases of matter beyond the traditional ideas involving the breaking of symmetries. The aim of this review is 

to give a comprehensive theoretical guide to the foundations of the topological phases including topological insulators 

semimetals and superconductors. It also describes the mathematical instruments to describe these phases e.g. topological 

invariants and the theory of the Berry phase and the effective quantum field tools, which are important in determining the 

stability of these materials to external perturbations. Classification systems including the AltlandZernbauer symmetry 

classes and the periodic table of topological phases will also be discussed as we attempt to understand the existence 

underlying relationship between symmetry and topological structure in the generation of unconventional quantum states. 

We also inform about the most noticeable theoretical frameworks, which lead to this field development such as the Haldane 

model and the KaneMille model and mention some of their applicable domains in new domains like quantum computing 

spintronics and energy-efficient technologies. Finally, we put into perspective the main technical issues confronting the field 

forced to draw such issues as the challenges that surround the preparation of materials and the control of their properties to 

such challenges as complex electronic interactions and environmental stability.  

Keywords: Condensed Matter Physics, Topological Materials, Topological Invariants, Berry Phase, Quantum Field Theory. 
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1. Introduction  

Condensed matter physics has been one of the 

pillars of modern physics both in terms of theory 

and experiments. It deals with investigation of 

physical characteristics of materials in different 

conditions both solid and liquid state and 

gaseous state.  Within the last couple of decades 

due to scientific developments topological 

materials have become a significant area of 

interest gathering attention of relevant research 

and industrial groups as a result of its very 

distinctive qualities which fail to be described 

by the established paradigms of materials 

physics [1] [2] . Their topological properties are 

very deep in nature and includes notable features 

like how they will retain their own quantum 

phases even with the existence of external 

disturbances  and this makes them stable on the 

microscopic level [1] [3].  
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This area is viewed as a potential one with 

regard to its use in the  future, i.e. quantum 

electronics, the design of high performance,  

energy efficient components [2], [4]. 

Topological materials have attained a growing 

level of interest due to the opportunity to 

transform the way we think about quantum 

systems, through the introduction of a new 

conceptual system of knowledge based on 

topology, which permits the explanation of 

novel states, including topological insulators, 

and Dirac and Weyl points [3], [5]. 

This occurred in the late 2000s with the 

discovery of the topological insulators and the 

field became a point of focus [6]. These 

materials have unusual properties the most 

attention-catching one is surface or edge 

electrical conductivity but at the same time the 

material acts as an insulator internally [6] [7]. 

This is attributed to the quantum properties, 

which were identified by carrying out a close 

examination of compounds that do not have 

time-reversal symmetry. This finding amounted 

to an important qualitative change in 

appreciating solid-state physics [7]  [8]. Since 

that time the field of study has been extended to 

new topological classes  such as conductors and 

topological semimetals. The variety of study on 

quantum matter has contributed to the 

advancement of more sophisticated theoretical 

frameworks to understand the state of quantum 

matter [2]  [3]  [9]. 

The purpose of the current paper is to give an in-

depth overview of the theoretical basis of the 

physics of topological materials in terms of the 

most significant fundamental mathematical tools 

contributing to the explanation of its 

complicated phenomena [10].  

It will deal with the criteria by which such 

materials are classified by their various 

symmetry properties  as well as how the 

properties of such materials can be discovered 

by the topological number theory [5] [11]. 

Besides  this paper covers the possible use of 

these materials in other applications  like 

quantum electronics and stable 

superconductivity  as they possess some 

unconventional physical properties [4]  [9].  

The research issues impeding the application of 

these materials in advanced technology namely, 

quantum computing and low-power electronics 

will also be discussed [9] [12].  

In this work we will seek to elucidate on the 

potential of topological materials in the 

emergence of the sphere of condensed matter 

physics and offer a theory that will facilitate 

scientific knowledge enhancement in the field of 

topological materials as well as on future 

research work in the expanding field [1]  [10]. 
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2. Theoretical foundations of topological 

materials 

 The topological materials within the theoretical 

knowledge level is a fundamental framework 

and a significant aspect when it comes to the 

advancements in condensed matter physics.  

Topology in this context, tries to investigate the 

quantized nature of electronic wave functions 

and the general properties which are invariant to 

the effects of infinitesimal variations to the 

parameters of a system. This differs with the 

traditional notions of local order. These 

perfections can be explained by topological 

invariants like Chern number and the Z2 index  

which reveal the quantum mechanical properties 

of these systems in intrinsic manner. The 

topological materials possess the quantum 

phases that are robust to the local perturbations  

such as structural defects, scattering and 

interference with the outside realm. That 

stability is caused by the topological protection 

of some fundamental symmetries such as time-

reversal symmetry and crystalline symmetries.  

Acquiring this feature   they brought about a 

growing interest on these materials in 

developing fault-tolerant platforms of the 

quantum computing technology  as well as in 

low-power electronics applications [13]  

Due to the significant advance in theoretical 

frameworks  instrumental by the use of machine 

learning and high-performance computing 

methods  it is evident that the landscape of 

classifying topological phases has increased 

immensely  no longer being restricted only to 

topological insulators  but being extended 

further to topological semimetals  

superconductors  and higher-order topological 

phases [14]. 

2-1 Topological Insulators 

Topological insulators (TIs) are a class of 

quantum materials that are insulating in the bulk 

(the interior) but possess conductive states at the 

edges or surfaces. These edge states are 

protected by time-reversal symmetry (TRS)  

giving them a pronounced resistance to non-

magnetic disturbances  resulting in a spin-

polarized  non-dissipative electronic transition at 

the boundaries. The presence of these 

conductive states can be expressed through a 

precise mathematical description based on 

topological constants  most notably the Z2 index 

in two- and three-dimensional systems that resist 

breaking time-reversal symmetry. The general 

form of this index can be written in two 

dimensions as follows: 

𝒗 =
𝟏
𝟐𝝅&' 𝒅𝟐

	

𝑬𝑩𝒁
𝑲	𝜴𝒛 −- 𝒅𝒌	. 𝑨

	

𝝏𝑬𝑩𝒁
1𝒎𝒐𝒅	𝟐.			(𝟐 − 𝟏) 

Where: 

v: represents a topological number 

Ω: (Berry curvature)  

A: (Berry connection)  
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EBZ: (Effective Brillouin Zone)  

∂EBZ: the boundary of the Effective Brillouin 

Zone 

A value of 1 labels a nontrivial topology phase  

and a value of 0 a conventional insulator. This 

relation gives the relationship between the 

topology and the geometrical properties of the 

wave function through Berry phase.  Over the 

past few years  great design and discovery 

efforts of new topological insulators have been 

achieved due to the developments of symmetry 

analysis tools  spin-orbit coupling control  and 

first-principles calculations. Such success has 

been specifically real on layered van der Waals 

materials and artificial hetero structures. [15] 

[16] . Such advancements have opened up the 

possibility to integrate these materials in to 

many applications  such as spintronic devices  

quantum anomalous Hall platforms  and 

topological qubits in quantum computing [17]. 

 

Fig.(1): Band structure of a 3D symmetric  topological 

insulator[17]. 

2-2 Topological Semimetals 

The sample application of topological conductors 

can be discussed as the example of Dirac and Weyl 

semimetals that present specific quantum properties. 

These materials are expressed in the crisscrossing of 

the conduction and valence bands at discrete 

positions in the Brillouin zone. These details 

produce quasiparticles which behave as 

relativistic Dirac or Weyl fermions giving rise to 

novel phenomena including surface Fermi arcs 

and chiral anomalies in the presence of an 

applied magnetic field[2] [5] [9]. 

The systems enjoy unusual responses to external 

perturbations  and such aspect has been 

substantiated by the abundance of theoretical 

models and experiments [1] [2] [14].  

One can describe the energy dispersion of 

quasiparticles in momentum space as follows: 

𝑬(𝒌) = ±𝑲(ℏ𝒗𝒇(															(𝟐 − 𝟐) 

Where: 

E(k): energy of the particles versus 

k=1/wavelength. 

h: Planck constant divided by 2pi. 

vf: The Fermi velocity vF which is the velocity 

of Weyl-like or Dirac-like particles in the 

material.  

The type of spectrum is ±, which means that it 

consists of two symmetric bands a positive 

energy band and a negative energy band at a 
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meeting point which is called the Dirac point or 

the Weyl point. 

2-3 Topological Number Theory (Topological 

Invariants) 

Topological constants are very useful and have a 

center-stage of characterizing topological phases 

by their inherent structure in quantum 

properties. Such constants as Z2 index on 

topological insulators and Chern number on 

topological conductors are employed as 

quantitative measurements that cannot be 

affected by continuous distortions on the system  

such as crystalline defects on the lattice and 

certain phase transitions of the system. These 

constants describe the robustness of topological 

phase and its extension in parameter space  

rendering them highly useful as a way of 

characterising the structure of non-conventional 

quantum phases [6] [11] [14] . 

F(k) is the Berry curvature within the Brillouin 

zone and one can calculate Chern by doing an 

integral thereof as follows: 

𝑪 = 𝟏
𝟐𝝅∫ 𝒇(𝑲)𝒅𝟐𝑲	

𝑩𝒁 		(𝟐 − 𝟑)  

with F(k) the Berry curvature in the wave space.  

Such numbers cannot be disturbed by the 

common disturbances, like crystal imperfections 

or phase changes. This means that this material 

will retain its topology characteristics despite 

the regional modifications  e.g.  influence. Such 

numbers can describe the presence of inert. edge 

states in topological insulators. 

2-4 The Role of Band Theory 

Band theory Solid-state physics  Band theory 

forms a foundation of solid-state physics by 

offering an explanatory conceptual framework 

of the electronic configuration of crystalline 

materials. The band theory is founded on the 

time-stable solutions to Schrodinger equation. 

The electrons are supposed to move in a 

periodic potential produced by the periodic 

packing of atoms in a crystal lattice. The origin 

of this periodic potential is the translational 

symmetry of crystals  which permits quantizing 

the energy levels into distinct bands: 

𝑯4𝝍𝒏	𝒌 = 𝑬𝒏(𝒌)	𝝍𝒏	𝒌					(𝟐 − 𝟒)                                     

𝑯4	represents the time periodic Hamiltonian  

𝝍𝒏	𝒌 The Bloch wave function in the n n th 

energy band, the crystal momentum K and the 

energy dispersion relation 𝑬𝒏(𝒌) 

The band theory is also useful in the topological 

material study since this allows us to chart non-

trivial band inversions that commonly arise out 

of spin-orbit coupling or breaking of the 

crystals. The net outcome of such inversions are 

leads to surface or edge states that are immune 

to conventional materials [9] [13].  

Highly robust states Spectra of topologically-

protected states tend to be very robust to 



MJPS,   VOL. (12),   NO. (2), 2025 

 
 

74 

perturbations. This activity is pertinent to the 

topological invariants on the basis of universal 

aspects of Bloch wave functions within the 

Brillouin zone. The recent advances have 

allowed to build on the achievements of 

classical band theory, by embodying the 

symmetry indices in the notions of topological 

quantum chemistry.  The systematic 

understanding that this integration offers to 

characterization of topological phases in terms 

of the eigenvalues of symmetry elements and the 

content of atomic orbitals at high-symmetry 

points in the inverse space [14] [18] [20].  

These recent methods have allowed both 

massive and highly effective topological surgery 

of topological phases, and the building of 

comprehensive materials databases, which is 

done utilizing first principles calculations and 

symmetry-based queries [1] [16] [19] [21]. 

These more fancy constructions have also led to 

the discovery of novel topological insulators 

semimetals and superconductors  [20] [21]. 

The techniques have equally been important in 

exploring hetero structures  especially two-

dimensional van der Waals materials that have 

proven to exhibit tunable and controllable 

topological properties [15] [17]. 

2-5 Berry Phase and Topological Curvature 

The Berry phase is a geometric quantity 

obtained by the wave function of a quantum 

system as it slowly (adiabatically) evolves along 

a closed path C in parameter space. This phase 

is defined by the relationship: 

𝜸𝒏(𝑪) = 𝒊'𝒅𝑹. 〈𝝍𝒏(𝑹)|𝜵𝑹|𝝍𝒏(𝑹)〉
	

𝑪
		(𝟐 − 𝟓) 

Where:  

R  represents the vector of coefficients. 

∇*   a gradient operator in the parameter space. 

〈𝜓+(𝑅)|∇*|𝜓+(𝑅)〉 Perry's Connection. 

The Berry curvature can be analogized to the 

behavior of a magnetic field in momentum or 

parameter space and is a fundamental factor in 

the modern theory of electric polarization and 

many topological phenomena. For example  it is 

essential for understanding the anomalous Hall 

effect in systems that do not possess time-

reversal symmetry. It also contributes to the 

emergence of topologically protected edge and 

surface states by generating quantized 

topological constants such as the Chern number 

[6] [9]. 

Recent research has revealed a broad role for the 

Berry curvature beyond classical settings  

further enhancing its status as a fundamental 

analytical tool in condensed matter physics: 

• In antiferromagnetic systems  multipole 

Berry bend structures have been 

identified  for example in Kagome 

antiferromagnets such as FeSn. It has 
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been confirmed that the Berry bend 

quadrupole induces a large third-order 

nonlinear Hall effect even at room 

temperature. [22]. 

• The Berry curvature in non-Hermitian 

photonic systems has been measured 

directly using polarimetry in photonic 

crystal sheets. This allows the valley 

Chern number to be extracted without 

affecting the eigenstates of the system. 

This approach provides a rich 

experimental understanding of the 

geometric properties of dissipative or 

excited systems. [23]. 

• Moreover some recent studies have 

shown how the quantum geometric 

tensor combining Berry curvature and 

quantum gradient controls nonlinear 

transport states. It has been shown that 

systems lacking inversion symmetry 

exhibit Berry curvature dipoles and 

quadrupoles leading to second- and 

third-order responses such as the 

anomalous nonlinear Hall effect.. [24]. 

All these results highlight a fundamental 

shift in our understanding of Berry 

curvature. Once considered primarily in the 

context of linear responses and isolation 

phases  it has now become a fundamental 

element in nonlinear transport  photonic 

topological platforms  and quantum 

engineering. 

 

Fig. (2): Representing the concepts of Berry phase 

and Berry curvature.[ Figure designed by the author] 

3. Mathematical Techniques Used in the 

Study of Topological Materials 

Understanding topological phases of matter 

requires a precise mathematical framework 

capable of describing quantum constants that 

remain invariant under continuous deformations. 

This section outlines the main mathematical 

techniques used to classify and characterize 

topological materials 

3.1 Topological Number Theory (Topological 

Invariants) 

Topological constants are quantized quantities 

that serve as identifiers for different topological 

phases. The most prominent of these constants 

are the Chern number  the Z2 indices  and the 

spin numbers. These constants remain stable 

relative to the smooth deformations which leave 

the structural symmetry and gap in energy of the 
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system unchanged. Z2 indices Z2 indices are a 

crucial mechanism which is applied in the 

classification of topological insulators which 

have two or three dimensions and preserve time-

reversal symmetry. This constant can be 

typically built up using integrals over the Berry 

continuum or the Berry twist on a manifold in 

momentum space or parameter space. This 

integral can be simplified as given below: 

𝒁𝟐 = (−𝟏)? 𝑨𝒅
	

𝑴
= ±𝟏							(𝟑 − 𝟏 − 𝒂) 

Where: 

𝑀 represents the manifold in the phase space to 

the matter 

𝐴. is the differential form coming along with 

the quantum field connection (Berry connection 

or Berry curvature in some contexts) 

The value of Z2 index is negative 1, which 

means unconventional topological phase with 

the occurrence of surface or edge protected 

states amidst total energy gap. It is recently that 

it has been extended to the application of quasi-

quantum Hall systems which goes to show its 

high accuracy even in metallic and semi-

metallic systems  [25]. Among the topologically 

most significant quantities in systems without 

the time-reversal symmetry  as the quantum Hall 

effect, Chern number is one of them. This figure 

is given by the integration of the Berry curvature 

as expressed by the statement in Equation (2-3). 

A non-zero Chern number indicates the presence 

of quantum Hall conductivity and topologically 

protected chiral edge states. Some recent 

research has demonstrated the existence of 

anomalous quantum Hall (QAH) phases with 

high Chern number in specially designed 

materials such as MnBi₂Te₄ thin films [26]. In 

one-dimensional systems with chiral or particle-

hole symmetry such as the Su-Schrieffer-Heeger 

(SSH) model  the spin number ν provides a 

criterion for identifying the topological phase  

𝒗 =
𝟏
𝟐𝝅𝒊

7
𝒅
𝒅𝒌

𝝅

&𝝅
𝐥𝐨𝐠𝒅𝒆𝒕[𝒒(𝑲)] 𝒅𝒌		(𝟑 − 𝟏 − 𝒃) 

Here  q(k) is the off-diagonal mass of the Bloch 

function in its chiral symmetric form. This 

constant correctly predicts the emergence of 

zero energy edge states in topologically non-

trivial phases. [27]. 

3.1.1 Emerging Techniques and 

Generalizations 

• Local Chern Markers  

To link theory and experiment together  local Chern 

signals were developed as an analogue of the Chern 

number in real space. These signals allow precise 

spatial detection of topological order  which is very 

important in inhomogeneous or disordered systems. 

[28].  

• Topology in Non-Hermitian Systems 
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Recent theoretical developments have led to an 

expansion of the concept of topological 

invariants to non-Hermitian systems  where the 

Hamiltonian is not equal to its conjugate. In 

these frameworks  spectral degeneracies known 

as exceptional points play a role similar to Dirac 

nodes in Hermitian systems. The topological 

invariants in these systems have been redefined 

in terms of generalized spin numbers and 

biorthogonal Berry phases which fit the non-

standard mathematical properties of the non-

Hermitian energy spectrum.. [29]. 

• Curvature Renormalization Group 

(CRG) 

The CRG approach describes the behavior of 

Berry curvature gradient around phase 

transitions.  The method is an alternative to the 

traditional renormalization techniques, and it has 

been demonstrated to be useful in a 

classification of critical points in a topological 

system. [30]. 

3.2 Effective Quantum Field Theory 

Effective Quantum Field Theory (EQFT) is the 

important resource in the area of theoretical 

physics in comprehending the physical 

phenomena at lower energies than in the higher 

energy scales like grand unification energy or 

the Planck energy. This theory is premised on 

the gauge separation principle  which 

presupposes that high-energy degrees of 

freedom can be ignored and be substituted by 

effective terms that are added to the low-energy 

Lagrangian. As an illustration in the electroweak 

energy range a diagrammatic (e.g.: the 

HooftVeltman diagram technique) can be 

applied so that renormalization can be studied at 

the single-loop order and chiral symmetry 

maintained leading to a consistency of physical 

amplitude calculation throughout the effective 

frame [31]. 

In the subject of condensed matter physics  the 

dynamics of electrons on or close to the Fermi 

surface can be described in terms of an effective 

theory grounded upon low-momentum 

scattering  which allows electronic phenomena 

in crystals to be effectively discussed: 

𝑳𝒆𝒇𝒇 = 𝝍# $𝒊𝝏𝒕 +
𝛁𝟐

𝟐𝒎∗+𝝍 +
𝒈
𝟐
(𝝍#𝝍)𝟐 +⋯(𝟑 − 𝟐) 

Where: 

m∗ is the effective mass of the electron  

g represents the strength of the interaction 

between the electrons. 

This type of description is classified as a 

"Fermi-Landau liquid model " an effective field 

theory for electrons in metals. 

3.3 Edge State Theory 

Edge state theory describes the behavior of 

electrons within the boundaries of topological 

materials  such as topological insulators or 
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systems that exhibit the quantum Hall effect. In 

these cases  conductive edge states emerge that 

resist scattering. This phenomenon is due to the 

topological structure of the material or its 

fundamental symmetries. These states arise as a 

result of the presence of an energy gap in the 

electronic structure of the crystal  with lower-

energy energy states remaining localized at the 

edges. The Bernevig–Hughes–Zhang model and 

the two-dimensional Schrödinger and Dirac 

models are the fundamental theoretical models 

for studying these phenomena. The motion of 

electrons at the edges can be described using the 

one-dimensional Dirac equation which describes 

the propagation of topological conductive states 

along the boundaries of the sample: 

𝑯 = −𝒊	ℏ𝒗𝑭𝝈𝒁
𝝏
𝝏𝒙			(𝟑 − 𝟑 − 𝒂) 

where: 

H:  the Hamiltonian  

ℏ : the reduced Planck constant  

vF : the Fermi velocity  

𝜎0 : the Pauli operator  

1
12

 : the spatial derivative along the edge 

direction. 

This equation expresses the case of a spectral 

edge moving in a specific direction without the 

possibility of back reflection. This is due 

to the separation of the right and left channels 

due to the topological structure. In the case of 

the quantum Hall effect  the edge can be defined 

as a channel that conducts current in only one 

direction. The quantum conductivity can be 

given by the following equation: 

𝝈𝒙𝒚 = 𝒗
𝒆𝟐

𝒉 										(𝟑 − 𝟑 − 𝒃) 

Where: 

𝜎25 : the Hall conductance  

ν : a whole number (in classical quantum 

effects) or fractional number (in fractional 

quantum effects) representing the number of 

edge states. 

e : the charge of the electron  

h : Planck's constant. 

The bulk-boundary correspondence principle 

states that the number of edge states in a 

topological system reflects its fundamental 

topological number  such as the Chern number. 

This principle is the conceptual link between the 

microscopic topological structure of the system 

and the observable physical phenomena at the 

edges. Recent experimental measurements have 

confirmed this principle  particularly in 

magnetic topological insulators such as 

MnBi₂Te₄  where strong edge currents have 

been observed even in the absence of external 
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magnetic fields  confirming the intrinsic nature 

of topology in determining edge properties [32]. 

3.4 Degenerate Matrix Theory 

Degenerate matrix theory is a fundamental 

mathematical tool in the analysis of quantum 

systems  particularly in the study of topological 

materials that exhibit properties resulting from 

symmetry and symmetry breaking. A degenerate 

matrix is a matrix with degenerate (repeated) 

eigenvalues  a property that indicates the 

presence of internal symmetries in the physical 

system under study. This degeneracy contributes 

to the repetition of energy levels  a behavior that 

can be observed in many topological models  

such as topological insulators and non-classical 

quantum phases. When the Hamiltonian matrix 

H is degenerate  it contains at least two identical 

eigenvalues  indicating an underlying symmetry 

in the system that affects its spectral structure. 

𝑯𝝍𝒊 = 𝑬𝝍𝒊			𝑯𝝍𝒋 = 𝑬𝝍𝒋		𝒘𝒉𝒆𝒓𝒆	𝒊 ≠ 𝒋				(𝟑 − 𝟒 − 𝒂)	 

ψi and ψj denote wavefunctions with the same 

eigenvalue E  demonstrating spectral 

degeneracy. It is a direct consequence of 

quantum degeneracy that also is central to define 

the  topological phase transitions. In order to 

display the consequences of a perturbation 

which might result in partial breaking of the 

symmetry the projection is calculated on to the 

subspace of degenerate eigenvalues of that is 

that the eigenvalue E. This extrapolation is 

written mathematically as the projection matrix 

P  which projects the dynamics onto this 

subspace and calculates the sensitivity to 

perturbations in each dimension of this 

subspace: 

𝑷	 = 	O |𝝍ₙ⟩⟨𝝍ₙ|
𝒅

𝒏6𝟏

			(𝟑 − 𝟒 − 𝒃) 

Where: ψn is a collection of gradient wave 

functions and d is the number of such functions. 

Through the examination of the small weak 

couplings   degenerate perturbation theory is 

applied to examine small shifts of the energy 

level and time development of quantum states. 

This method permits the isolations of hidden 

dynamical dynamics in degenerate spaces at 

which the eigenvalues are identical without a 

perturbation and accessing how the eigenvalues 

are split, or alteration of the wave functions 

under small external forces: 

𝑯- = 𝑯𝟎 + 𝝀𝑽								(𝟑 − 𝟒 − 𝒄) 

Where: H0 is the gradient Hamiltonian and V a 

small perturbation.  

Energy transformation can be determined during 

solving of the interference matrix within the 

gradient space: 

𝑾𝒎𝒏 = ⟨𝝍𝒎|𝑽|𝝍𝒏⟩								(𝟑 − 𝟒 − 𝒅) 

The most recent work demonstrated that this can 

be done effectively by applying degenerate 
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perturbation theory with the tools of quantum 

engineering to characterizing both topologically 

degenerate states and symmetry-protected states 

[33]. 

Further studies on exceptional point physics 

have demonstrated that Hamiltonians that are 

degenerate behave nonlinearly where their 

spectral sensitivities attain √𝐿 ∈This has the 

potential of opening up to exciting applications 

in ultra-precision sensing in non-Hermitian 

topological systems [34]. 

The approach is common in the study of 

quantum phenomena in materials whose 

topological properties can be highly non-trivial  

such as systems with strong interactions and 

symmetry-guaranteed edge states. 

3.5 Fourier Transformations and Phase 

Transitions 

Fourier transforms play a fundamental role in 

the analysis and study of physical systems 

amenable to spectroscopic description  

particularly in the context of phase transitions. 

They allow the transition from real space (r) to 

reciprocal space (k)  facilitating the study of 

microscopic structures and the behavior of 

matter in different phases. The three-

dimensional Fourier transform of a physical 

field function f(r) can be written as: 

𝒇~(𝑲) = ? 𝒇(𝒓)
	

𝑹𝟑
𝒆<𝒊𝒌.𝒓𝒅𝟑𝒓			(𝟑 − 𝟓 − 𝒂) 

While the inverse transformation is given by: 

𝒇(𝒓) =
𝟏

(𝟐𝝅)𝟑
7 𝒇~(𝑲)
	

𝑹𝟑
𝒆&𝒊𝒌.𝒓𝒅𝟑𝒓(𝟑 − 𝟓 − 𝒃)	 

Within the scope of phase transitions  Fourier 

transforms are an essential tool for interpreting 

correlation functions that describe physical 

variables interacting (e.g. density or magnetism) 

in distinct points in a system. The two point 

correlation function follows as: 

𝑮(𝒓) = 〈∅(𝟎)∅(𝒓)〉				(𝟑 − 𝟓 − 𝒄) 

where ∅(𝑟) is a physical quantity, magnetism or 

density and ⟨⋅⟩ refers to ensemble average 

Fourier transform is given by: 

𝑺(𝑲) = ?𝑮(𝒓)	𝒆𝒊𝑲.𝒓𝒅𝟑𝒓						(𝟑 − 𝟓 − 𝒅)	 

The structure factor is measurable through 

experiment such as X-ray and neutron 

diffraction. Most recently inverted structure 

factor calculation under light excitation e.g. in 

VO 2 has been shown to be possible with tensor 

network simulations that can furnish good 

understanding of phase transitions in addition to 

the spatial correlations in strongly coupled 

system  [35]. 

4. Classification of topological phases 

Topological phases are an unorthodox phase of 

matter system.  They cannot be categorized 

according to the local properties like energy gap 

or symmetry breaking unlike the conventional 
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phases. Instead they are characterized by 

properties that are global in nature resulting out 

of the way the electron wave function is 

characterized by the frequencies of the band. 

These phases themselves are described in terms 

of mathematical abstractions based on topology 

and the theory of group representations and are 

characterized by topological invariants such that 

these do not change with continuous 

deformations of the system provided the spectral 

gap does not cease. 

Such a distinction depends both on topology of 

the reciprocal space, and also on the 

correspondence between the electronic energy 

bands. The topological constants are read off 

and obtained by integrations over the Brillouin 

zone. 

The most prominent example of that is a Chern 

number that can be estimated in Equation (2-3) 

and can be viewed as a quantitative measure of 

the topological nature of the system [13] [19] 

[36]. 

4.1 Main types of topological phases: 

4.1.1 Topological Insulators 

These materials have a spectral gap in their 

overall electronic structure and at the same time 

contain conductive edge states that are generated 

as a direct result of time-reversal symmetry 

(TRS)  which gives them topological protection 

against non-magnetic disturbances. These 

materials are classified according to their 

topological Z₂ indices in two and three 

dimensions which has recently been proven 

thanks to the rapid progress in the study of 

intrinsic topological insulators.  [6] [9] [17] [25] 

[39]. 

4.1.2 Topological superconductors 

Unconventional edge states are found in 

topological superconductors  the most apparent 

ones are zero-order Majorana modes emerging 

at system boundaries or topological defects. 

These systems are categorized by topological 

indexes of type either Z or Z2 depending on the 

symmetries the system preserves e.g. time-

reversal symmetry and particle gap symmetry. 

This type of materials was recently a subject of 

great attention as it is capable of bearing strong  

anti-disturbance quantum states   and therefore 

will be a future candidate to use topological 

quantum computing [7] [10] [11] [27] [36] [37]. 

4.1.3 Topological semimetals 

Weyl and Dirac semimetals are among the most 

important topological materials as they exhibit 

distinctive spectral points called Weyl or Dirac 

points near the Fermi level. These points are 

associated with topological charges  such as 

non-zero Chern number  which causes the 

appearance of Fermi arcs on the crystal surfaces. 

This spectral structure generates distinct electron 

transport  nonlinear Hall effect and the quantum 
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distortion effect. Angular resolved photon 

emission spectroscopy (ARPES) and quantum 

fluctuation data including the de Haas van Alpen 

effect has been used experimentally to 

determine the existence of these surface 

states[2] [5] [22] [38] [39]. 

 

Fig.(3): Energy bands Dirac/Weyl points and Fermi arcs 

in topological semimetals within the Brillouin Zone [38]. 

4.1.4 Topological Crystalline Insulators 

The topological phases differ in that they are 

defined in terms of explicit crystal symmetries 

(reflection, rotation and chirality) rather than 

being restricted to time-reversal. These states 

have been experimentally verified in materials 

including SnTe  which is viewed as a 

sophisticated sample of topological-insulators 

secured in point reflection invariance. The 

recent studies have helped in enhancing the 

topological classification of these phases with 

the assistance of the crystal symmetry indices 

and breaking down band representations on 

high-symmetry points in the Brillouin zone.[14] 

[18] [21] [40]. 

4.2 Topological classification and symmetry: 

the Altland-Zirnbauer family 

AltlandZirnbauer (AZ) classification, AZ 

classification The AZ classification is an 

important theoretical tool to describe quantum 

topological phases in terms of three broad 

classes of symmetry:  

• time-reversal symmetry (T) 

• Symmetry on particles spacing (C) 

• Charge/conductivity symmetry (S)  

This typology returns ten topological classes 

which are all referred to as the periodical table 

of topological phases. Every spatial dimension 

has so-called topological index either integer (ℤ) 

or binary (ℤ₂) [10] [11].  

 
Table 1: Periodic table of topological insulators and 
superconductors (1D up to 3D) [42] 

 

Over the past few years this framework has been 

extended considerably to incorporate crystalline 
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symmetries  higher-order boundary phenomena  

and non-Hermitian systems  leading to the 

development of extended versions of the AZ 

table  which are currently in use to classify 

higher-order topological insulators and 

superconductors [41]. 

5. Comparison with traditional materials 

Topological materials represent a paradigm shift 

in the classification of condensed matter phases  

transcending the traditional framework that 

divides materials into conductors  

semiconductors  and insulators based on local 

electronic properties  particularly the presence 

of an energy gap at the Fermi level. Topological 

materials are unique in that they possess 

universal topological constants  such as the 

Chern number and the Δ₂ index  which remain 

quantized and stable under the influence of 

simple system distortions as long as the spectral 

gap does not close [11] [25].  

This topological protection provides a 

significant degree of robustness to structural 

disturbances and defects  unlike conventional 

materials  which rely on symmetry breaking and 

local order parameters to determine their 

physical properties. One of the most distinctive 

features of these materials is the presence of 

topologically protected surface or edge states 

which are generated as a result of the interaction 

of bulk with boundaries in the system. These 

states are established by time-reversal symmetry 

or specific crystal symmetries and remain stable 

even in the presence of moderate disturbances 

[9] [14].  

In contrast surface states in conventional 

materials exhibit high sensitivity to impurities 

and defects  and their conductive properties can 

easily degrade. Furthermore  topological 

materials exhibit exceptional quantum 

phenomena  such as dissipative edge transport 

and quantum conduction  which are not 

observed in conventional systems based on 

quasi-classical charge carrier motion. These 

properties provide a gateway to advanced 

applications in fields such as fault-tolerant 

quantum computing  spintronics  and highly 

energy-efficient nanoelectronics [9] [17] [36]. 

 

Fig. (4): Emergence of protected surface states in 

topological materials compared to conventional 

materials[.[Figure designed by the author] 

6. Modern Applications and Theoretical 

Models 
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Topological materials have emerged as a key 

element in contemporary condensed matter 

physics due to their protected surface states and 

unique symmetry properties which open the way 

for pioneering applications in theory and 

technology. 

6.1 Prominent Practical Applications 

• Topological Quantum Computing: 

Topological superconductors are one of 

the most distinctive quantum systems 

that support zero-point Majorana modes. 

These quasiparticles exhibit non-Abelian 

statistics  making them fundamentally 

different from conventional fermions and 

bosons. These modes provide a 

promising platform for creating quantum 

bits (qubits) that exhibit natural fault 

tolerance due to their topological 

protection making them ideal for 

topological quantum computing 

applications. Recent studies have 

demonstrated the emergence of these 

modes in several systems including 

Mn₂B₂ as well as in carefully engineered 

hybrid structures that combine 

superconductivity and electronic 

topology which will support the 

possibility of controlling these states and 

using them in future quantum devices. 

[36] [37]. 

• Low-Power Electronics:  

Topologically protected edge states in 

two-dimensional topological insulators 

provide a scattering-free electron 

transport channel due to their resistance 

to scattering from defects or impurities  

enabling efficient energy transfer at the 

nanoscale. This behavior is ideal for 

developing low-power electronic devices  

as power loss can be minimized. This 

makes these materials a promising option 

for designing energy-efficient 

nanoelectronic components. [9] [17]. 

• Topological Spintronic: The strong 

coupling between electron momentum 

and spin called spin-locking in 

topological insulators offers promising 

possibilities for generating stable spin 

currents without the need for external 

magnetic fields. This physical principle 

is a fundamental step toward developing 

high-performance logic devices and 

memory characterized by ultrafast speed 

and stability making topological 

insulators a promising foundation for 

modern spintronics.[17]. 

• Quantum and Magnetic Sensors: Weyl 

and Dirac semimetals exhibit 

unconventional and strong responses to 

electromagnetic fields due to the chiral 

anomaly and Berry curvature effects 

characteristic of their topological 

structure. These properties enhance 
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magnetic and gravitational sensitivity  

paving the way for precise applications 

in topological sensing and high-

performance detection in complex 

quantum environments [24] [38] [39]. 

 

Fig. (5): Main areas of applications of topological 

materials.[ Figure designed by the author] 

6.2 Advanced Theoretical Models 

The theoretical exploration of topological phases 

has been developed using sophisticated models 

that provide deep mathematical insights into the 

non-trivial topology of domains: 

• Haldane Model (1988):  

Haldane's (1988) model is one of the 

fundamental models that explains the 

emergence of Chern insulators without 

the need for a net magnetic field  which 

provides a theoretical framework to 

accommodate the anomalous quantum 

Hall effect. In Ak (2005)  Kane-Milley's 

model was introduced as an extension of 

this model by linking the spin-orbit 

coupling within a similar lattice structure  

which opened the door to understanding 

two-dimensional topological insulators  

especially in materials such as graphene. 

This model represented a basis for 

explaining the existence of edge states 

protected by time-reversal symmetry and 

contributed to the development of the 

concept of the topological Z₂ index... 

• Kane-Mele Model (2005): The 

incorporation of spin-orbit coupling into the 

Haldane model opened the door to the 

discovery of the quantum spin Hall effect in 

two-dimensional systems similar to 

graphene. This modification demonstrated 

the possibility of generating anti-dispersion 

spin edge currents protected by time-reversal 

symmetry without the application of an 

external magnetic field. This discovery 

established a fundamental step in the 

development of the theory of topological 

insulators and their future applications in 

spintronics and quantum computing. [11]. 

• Non-Hermitian Topological Models: 

These models expand the scope of the 

traditional topological classification to 

include non-Hermitian systems 

characterized by gain and loss 

mechanisms. This has resulted in the 

discovery of new topological phases 

associated with unconventional edge 
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states not found in Hermitian systems. 

These developments draw attention to 

distinctive spectral structures such as the 

asymmetric spectrum and exceptional 

points  increasing the understanding of 

topology in open systems and offering 

promising possibilities for the design of 

highly sensitive photonic and electronic 

devices [23] [29] . 

7. Challenges and Future Prospects 

Despite the quantum leap in the understanding 

and design of topological materials fundamental 

challenges remain that limit their practical 

applications. The most important of these 

challenges is the difficulty of manufacturing 

topological materials with high crystalline 

quality that can maintain their topological 

properties under harsh environmental 

conditions. Factors such as structural 

heterogeneity temperature fluctuations and 

pressure can weaken protected edge states and 

quantum coherence causing a deterioration in 

topological performance [14] [21] [40]. 

There is also a significant gap between ideal 

theoretical models and experimental 

applications. Many topological predictions rely 

on simplified proposals for band structures 

without taking into account electron interactions 

chaos and lattice vibrations. To bridge this gap  

advanced approaches such as dynamical mean 

field theory (DMFT)  density matrix 

renormalization group (DMRG)  and quantum 

Monte Carlo simulations must be employed  

which provide a more accurate description of 

systems with strong interactions [31] . 

Nevertheless the future of topological materials 

remains promising. For example topological 

quantum bits based on Majorana patterns are a 

prime candidate for building error-tolerant and 

scalable quantum computers [36], [37]. The 

potential to reduce energy loss and increase 

electrical conductivity at room temperature 

expands the horizon for developing low-power 

yet highly efficient electronic technologies [9] 

[22]. 

These insights can also be advanced with 

modern techniques in artificial intelligence and 

high-performance computing which are being 

leveraged to accelerate the discovery and design 

of topological materials. Machine learning 

algorithms are being employed to predict 

topological invariants from initial crystal 

structures  helping to guide experimental efforts 

more efficiently [16], [19]. This integration of 

theoretical physics and data science is likely to 

yield significant breakthroughs in the near future 

bringing topological materials closer to practical 

technical applications.  

8. Conclusion 

In this work, we detail the theoretical and 

physical developments associated with 
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topological materials  highlighting their 

fundamental role in redefining fundamental 

concepts in solid-state physics. Theoretical 

models such as topological insulators and 

conductors have created an ingenious conceptual 

framework for understanding the quantum 

behavior of electrons in complex systems and 

have contributed to the discovery of 

unconventional electronic phenomena based on 

comprehensive topological properties. We 

systematically compare topological materials 

with their conventional counterparts 

demonstrating the fundamental differences in 

their electronic magnetic and optical responses 

as confirmed by recent experimental results. We 

also highlight emerging trends such as strong 

electronic interactions symmetry functions and 

topology in non-Hermitian systems which 

currently represent active areas of research. The 

field of topological materials is one of the most 

dynamic areas in contemporary physics bridging 

theoretical challenges with promising technical 

applications. With the continued development of 

fabrication techniques numerical simulations 

and the use of artificial intelligence tools these 

materials can be expected to contribute to the 

development of advanced electronic and 

quantum systems. Therefore continuing 

multidisciplinary research in this field is a 

necessary step towards exploring the full 

potential of topological materials and exploiting 

them in next-generation applications. 
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